安庆教育网
二项分布的期望和方差-独立重复试验的概率求法-二项分布的判断与应用详细信息
宜城教育资源网www.ychedu.com

一、求独立重复试验的概率

(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即 2,…,n)是第i次试验的结果.
(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。

独立重复试验的概率求法 
二、独立重复试验:
(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验。
(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为 此时称随机变量X服从二项分布,记作X~B(n,p), 并称p为成功概率。
(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
(4)独立重复试验概率公式的特点: 是n次独立重复试验中某 事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式。
三、二项分布:
1.一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则 ,k=0,1,2,…n,
此时称随机变量X服从二项分布,记作X~B(n,p),并记 。
2.一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则 ,k=0,1,2,…n,
此时称随机变量X服从二项分布,记作X~B(n,p),并记 。
四、二项分布的判断与应用:
(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.
(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.
求二项分布:
二项分布是概率分布的一种,与独立重复试验密切相关,解题时要注意结合二项式定理与组合数等性质。

五、二项分布的期望和方差

二项分布的期望和方差:二项分布期望np,方差np(1-p);0-1分布,期望p方差p(1-p)。
证明过程
最简单的证明方法是:X可以分解成n个相互独立的,都服从以p为参数的(0-1)分布的随机变量之和:
X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.
P{Xi=0}=1-p,P(Xi=1)=p.
EXi=0*(1-p)+1*p=p,
E(Xi^2)=0^2*(1-p)+1^2*p=p,
DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).
EX=EX1+EX2+...+EXn=np,
DX=DX1+DX2+...+DXn=np(1-p).

 

宜城教育资源网www.ychedu.com
二项分布的期望和方差-独立重复试验的概率求法-二项分布的判断与应用
宜城教育资源网免费提供课件、试题、教案、学案、教学反思设计等备课资源。数百万资源,无须注册,天天更新!
宜城教育资源网
免责声明 :本站资源版权归原著作人所有,如果我们转载的作品侵犯了您的权利,请通知我们,我们会及时删除。
宜城教育资源网主办 站长:此地宜城 邮箱:yrqsxp@163.com  QQ:290085779