安庆教育网
等差数列性质的推导过程-等差数列求解与证明的基本方法详细信息
宜城教育资源网www.ychedu.com

一、等差数列的性质

(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
(3)m,n∈N*,则am=an+(m-n)d;
(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap;
(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。

等差数列性质的推导过程 
(6)
(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
(8)  仍为等差数列,公差为
二、等差数列求解与证明的基本方法
(1)学会运用函数与方程思想解题;
(2)抓住首项与公差是解决等差数列问题的关键;
(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).
三、等差数列的定义:
1.一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。
2.证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

四、等差数列推导过程

1.等差数列中,1,2,3,4,...特点是,后一项减去前一项等于1:2-1=3-2=4-3=d=1,a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,...an=a1+(n-1)d。对于这个数列,an=a1+(n-1)d=1+(n-1)*1=n。
2.等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2
五、对等差数列定义的理解:
①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. 
②求公差d时,因为d是这个数列的后一项与前一项的差,故有  还有
③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
④  是证明或判断一个数列是否为等差数列的依据;
⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。
六、构造常数数列巧求数列的通项公式:
非零常数列既是公比为1的等比数列也是公差为0的等差数列。在数列{an}中,若an+1=an,则数列{an}为常数列,其通项公式为an=a1。在求某些递推数列的通项公式时,若能构造出一个新的常数列,便能简捷地求出通项公式。

宜城教育资源网www.ychedu.com
等差数列性质的推导过程-等差数列求解与证明的基本方法
宜城教育资源网免费提供课件、试题、教案、学案、教学反思设计等备课资源。数百万资源,无须注册,天天更新!
宜城教育资源网
免责声明 :本站资源版权归原著作人所有,如果我们转载的作品侵犯了您的权利,请通知我们,我们会及时删除。
宜城教育资源网主办 站长:此地宜城 邮箱:yrqsxp@163.com  QQ:290085779