安庆教育网
素数和质数的区别-什么叫素数、什么叫质数详细信息
宜城教育资源网www.ychedu.com

一、素数和质数的区别

素数和质数的区别 

1.质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。
2.素数和质数是没有区别的。质数(又称素数),是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除(除0以外)的数称之为素数(质数)。比1大但不是素数的数称为合数,1和0既非素数也非合数。
3.这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。

二、质数的性质

1.质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么, 是素数或者不是素数。
2.如果为素数,则 要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
3.如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
4.其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

三、质数的应用

质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。
多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。

宜城教育资源网www.ychedu.com
素数和质数的区别-什么叫素数、什么叫质数
宜城教育资源网免费提供课件、试题、教案、学案、教学反思设计等备课资源。数百万资源,无须注册,天天更新!

中位数的求法公式-中位数,众数和平均数的区别与联系是
素数和质数的区别-什么叫素数、什么叫质数 
等比数列求和公式-等比数列前n项和公式-等比数列的性质
勾股定理的证明方法-勾股定理的应用 
三角函数cos公式表-余弦定理的公式及其变形 
三角函数的比-三角函数公式大全图解-Tan常用公式 
导数的几何意义和物理意义 
不等式的性质123分别是什么-不等式的基本性质 
反函数求导法则-反函数与原函数的关系 
不等式的基本性质有哪些-基本不等式中常用公式 

数学资源
数学试题列表
素数和质数的区别-什么叫素数、什么叫质数
宜城教育资源网
免责声明 :本站资源版权归原著作人所有,如果我们转载的作品侵犯了您的权利,请通知我们,我们会及时删除。
宜城教育资源网主办 站长:此地宜城 邮箱:yrqsxp@163.com